[LeetCode April Challange] Day 04 - Design Circular Queue
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
- MyCircularQueue(k) Initializes the object with the size of the queue to be k.
- int Front() Gets the front item from the queue. If the queue is empty, return -1.
- int Rear() Gets the last item from the queue. If the queue is empty, return -1.
- boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
- boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
- boolean isEmpty() Checks whether the circular queue is empty or not.
- boolean isFull() Checks whether the circular queue is full or not.
Example 1:
Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
- 1 <= k <= 1000
- 0 <= value <= 1000
- At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
Solution
Array
Time complexity : O(1)
Space complexity : O(n)
class MyCircularQueue {
private:
int *q, front, cnt, capacity;
public:
MyCircularQueue(int k) {
capacity = k;
cnt = front = 0;
q = new int[k];
}
bool enQueue(int value) {
if (cnt == capacity) return false;
q[(front+cnt++)%capacity] = value;
return true;
}
bool deQueue() {
if (cnt == 0) return false;
front = (front+1) % capacity;
--cnt;
return true;
}
int Front() {
return cnt == 0 ? -1 : q[front];
}
int Rear() {
return cnt == 0 ? -1 : q[(front+cnt-1)%capacity];
}
bool isEmpty() {
return cnt == 0;
}
bool isFull() {
return cnt == capacity;
}
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/
Link List
Time complexity : O(1)
Space complexity : O(n)
class Node {
public:
int val;
Node *next;
Node(): val(0), next(nullptr) {}
Node(int val_): val(val_), next(nullptr) {}
~Node() {}
};
class MyCircularQueue {
private:
Node *front, *rear;
int cnt, capacity;
public:
MyCircularQueue(int k) {
front = rear = nullptr;
cnt = 0;
capacity = k;
}
bool enQueue(int value) {
if (cnt == capacity) return false;
Node *curr = new Node(value);
if (cnt == 0)
front = rear = curr;
else {
rear->next = curr;
rear = rear->next;
}
++cnt;
return true;
}
bool deQueue() {
if (cnt == 0) return false;
Node *curr = front;
front = front->next;
delete curr;
--cnt;
return true;
}
int Front() {
return cnt == 0 ? -1 : front->val;
}
int Rear() {
return cnt == 0 ? -1 : rear->val;
}
bool isEmpty() {
return cnt == 0;
}
bool isFull() {
return cnt == capacity;
}
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/