[LeetCode April Challange] Day 02 - Ones and Zeroes
You are given an array of binary strings strs and two integers m and n.
Return the size of the largest subset of strs such that there are at most m 0's and n 1's in the subset.
A set x is a subset of a set y if all elements of x are also elements of y.
Example 1:
Input: strs = ["10","0001","111001","1","0"], m = 5, n = 3
Output: 4
Explanation: The largest subset with at most 5 0's and 3 1's is {"10", "0001", "1", "0"}, so the answer is 4.
Other valid but smaller subsets include {"0001", "1"} and {"10", "1", "0"}.
{"111001"} is an invalid subset because it contains 4 1's, greater than the maximum of 3.
Example 2:
Input: strs = ["10","0","1"], m = 1, n = 1
Output: 2
Explanation: The largest subset is {"0", "1"}, so the answer is 2.
Constraints:
- 1 <= strs.length <= 600
- 1 <= strs[i].length <= 100
- strs[i] consists only of digits '0' and '1'.
- 1 <= m, n <= 100
Solution
Top-Down DP
Time complexity : O(l*m*n) (l : size(strs))
Space complexity : O(l*m*n)
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
dp_.resize(size(strs), vector<vector<int>>(m+1, vector<int>(n+1)));
return helper(strs, m, n, 0);
}
private:
vector<vector<vector<int>>> dp_;
int helper(vector<string>& strs, int m, int n, int i) {
if (i == size(strs) || m+n == 0) return 0;
if (dp_[i][m][n]) return dp_[i][m][n];
int zeros = count(begin(strs[i]), end(strs[i]), '0');
int ones = size(strs[i]) - zeros;
dp_[i][m][n] = helper(strs, m, n, i+1);
if (zeros <= m && ones <= n)
dp_[i][m][n] = max(dp_[i][m][n], 1+helper(strs, m-zeros, n-ones, i+1));
return dp_[i][m][n];
}
};
Bottom-Up DP
Time complexity : O(m*n)
Space complexity : O(m*n)
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m+1, vector<int>(n+1));
for (string s: strs) {
int zeros = count(begin(s), end(s), '0');
int ones = size(s) - zeros;
for (int i=m; zeros<=i; --i) {
for (int j=n; ones<=j; --j) {
dp[i][j] = max(dp[i][j],
1 + dp[i-zeros][j-ones]);
}
}
}
return dp[m][n];
}
};