A valid encoding of an array of words is any reference string s and array of indices indices such that:

  • words.length == indices.length
  • The reference string s ends with the '#' character.
  • For each index indices[i], the substring of s starting from indices[i] and up to (but not including) the next '#' character is equal to words[i]. Given an array of words, return the length of the shortest reference string s possible of any valid encoding of words.

Example 1:

Input: words = ["time", "me", "bell"]
Output: 10
Explanation: A valid encoding would be s = "time#bell#" and indices = [0, 2, 5].
words[0] = "time", the substring of s starting from indices[0] = 0 to the next '#' is underlined in "time#bell#"
words[1] = "me", the substring of s starting from indices[1] = 2 to the next '#' is underlined in "time#bell#"
words[2] = "bell", the substring of s starting from indices[2] = 5 to the next '#' is underlined in "time#bell#"

Example 2:

Input: words = ["t"]
Output: 2
Explanation: A valid encoding would be s = "t#" and indices = [0].

Constraints:

  • 1 <= words.length <= 2000
  • 1 <= words[i].length <= 7
  • words[i] consists of only lowercase letters.

Solution

Remove suffix

Time complexity : O(n*l^2) (n: # words, l: word len)
Space complexity : O(n*l)

class Solution {
public:
    int minimumLengthEncoding(vector<string>& words) {
        set<string> st(words.begin(), words.end());
        for (string s: st) {
            for (int i=s.length()-1; 0<i; --i) {
                st.erase(s.substr(i));
            }
        }
        
        int ans = 0;
        for (string s: st)
            ans += s.length() + 1;
        return ans;
    }
};

Trie

Time complexity : O(n*l)
Space complexity :O(26^l)

class Node {
public:
    Node *children[26];
    int len;
    ~Node();
    Node(int val) {
        for (int i=0; i<26; ++i)
            children[i] = nullptr;
        len = val;
    }
};

class Solution {
public:
    int minimumLengthEncoding(vector<string>& words) {
        Node *root = new Node(0);
        
        for (string w: words) {
            Node *cur = root;
            for (int i=w.length()-1; 0<=i; --i) {
                if (cur->children[w[i]-'a'] == nullptr)
                    cur->children[w[i]-'a'] = new Node(cur->len+1);
                cur = cur->children[w[i]-'a'];
            }
        }
        
        ans = 0;
        dfs(root);
        return ans;
    }
private:
    int ans;
    void dfs(Node *node) {
        if (node == nullptr) return;
        bool isLast = true;
        for (Node *c: node->children) {
            if (c != nullptr) {
                isLast = false;
                dfs(c);
            }
        }
        
        if (isLast) ans += node->len + 1;
    }
};

將每個字從尾到頭尋訪建樹。
再 dfs 尋訪整棵樹,若其沒有 children,代表為完整的字,更新 ans。