[LeetCode March Challange] Day 06 - Short Encoding of Words
A valid encoding of an array of words is any reference string s and array of indices indices such that:
- words.length == indices.length
- The reference string s ends with the '#' character.
- For each index indices[i], the substring of s starting from indices[i] and up to (but not including) the next '#' character is equal to words[i]. Given an array of words, return the length of the shortest reference string s possible of any valid encoding of words.
Example 1:
Input: words = ["time", "me", "bell"]
Output: 10
Explanation: A valid encoding would be s = "time#bell#" and indices = [0, 2, 5].
words[0] = "time", the substring of s starting from indices[0] = 0 to the next '#' is underlined in "time#bell#"
words[1] = "me", the substring of s starting from indices[1] = 2 to the next '#' is underlined in "time#bell#"
words[2] = "bell", the substring of s starting from indices[2] = 5 to the next '#' is underlined in "time#bell#"
Example 2:
Input: words = ["t"]
Output: 2
Explanation: A valid encoding would be s = "t#" and indices = [0].
Constraints:
- 1 <= words.length <= 2000
- 1 <= words[i].length <= 7
- words[i] consists of only lowercase letters.
Solution
Remove suffix
Time complexity : O(n*l^2) (n: # words, l: word len)
Space complexity : O(n*l)
class Solution {
public:
int minimumLengthEncoding(vector<string>& words) {
set<string> st(words.begin(), words.end());
for (string s: st) {
for (int i=s.length()-1; 0<i; --i) {
st.erase(s.substr(i));
}
}
int ans = 0;
for (string s: st)
ans += s.length() + 1;
return ans;
}
};
Trie
Time complexity : O(n*l)
Space complexity :O(26^l)
class Node {
public:
Node *children[26];
int len;
~Node();
Node(int val) {
for (int i=0; i<26; ++i)
children[i] = nullptr;
len = val;
}
};
class Solution {
public:
int minimumLengthEncoding(vector<string>& words) {
Node *root = new Node(0);
for (string w: words) {
Node *cur = root;
for (int i=w.length()-1; 0<=i; --i) {
if (cur->children[w[i]-'a'] == nullptr)
cur->children[w[i]-'a'] = new Node(cur->len+1);
cur = cur->children[w[i]-'a'];
}
}
ans = 0;
dfs(root);
return ans;
}
private:
int ans;
void dfs(Node *node) {
if (node == nullptr) return;
bool isLast = true;
for (Node *c: node->children) {
if (c != nullptr) {
isLast = false;
dfs(c);
}
}
if (isLast) ans += node->len + 1;
}
};
將每個字從尾到頭尋訪建樹。
再 dfs 尋訪整棵樹,若其沒有 children,代表為完整的字,更新 ans。