Given an array arr of positive integers sorted in a strictly increasing order, and an integer k.

Find the k-th positive integer that is missing from this array.

Example 1:

Input: arr = [2,3,4,7,11], k = 5
Output: 9
Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The 5th missing positive integer is 9.

Example 2:

Input: arr = [1,2,3,4], k = 2
Output: 6
Explanation: The missing positive integers are [5,6,7,...]. The 2nd missing positive integer is 6.

Constraints:

  • 1 <= arr.length <= 1000
  • 1 <= arr[i] <= 1000
  • 1 <= k <= 1000
  • arr[i] < arr[j] for 1 <= i < j <= arr.length

Solution

Hash Table

Time complexity : O(n)
Space complexity : O(n)

class Solution {
public:
    int findKthPositive(vector<int>& arr, int k) {
        unordered_set<int> s;
        for (int n: arr) s.insert(n);
        
        for (int i=1; i<=arr.back(); ++i) {
            if (!s.count(i)) --k;
            if (0 == k) return i;
        }
        
        return arr.back() + k;
    }
};

用一 set 記錄出現的有哪些,再遍歷 1 ~ arr.back()。
若有遇到 miss 的,–k。
若 0 == k,則 i 為所求。

若遍歷完 arr ,k 還有剩,則 arr.back() + k 為所求。

Binary Search

Time complexity : O(logn)
Space complexity : O(1)

class Solution {
public:
    int findKthPositive(vector<int>& arr, int k) {
        int l = 0, r = arr.size()-1;
        while (l <= r) {
            int m = l + (r-l)/2;
            if (arr[m] - (m+1) < k)
                l = m + 1;
            else
                r = m - 1;
        }
        
        return k + l;
    }
};

normal:[1, 2, 3, 4, 5]
arr:[2, 3, 4, 7, 11]

2 - 1 = 1 (在 2 之前共 miss 1 個)
7 - 4 = 3 (在 7 之前共 miss 3 個)

可推得在 idx 之前共 miss 的個數為:arr[idx] - (idx + 1) 又 arr 為 strictly increasing order ,故 miss 個數同為 strictly increasing order。
在一個已排序的 array ,可以使用 Binary Search 加快搜索速度,目標是 miss 個數。
跳出迴圈後,l = r + 1。
我們的所求會界於 arr[r] ~ arr[l] 之間。
所求即為由 arr[r] 往上加,加多少會到達 k。

arr[r] + (k - 至 arr[r]之前 # miss)
arr[r] + (k - (arr[r] - (r + 1)))
arr[r] + k - arr[r] + r + 1
k + r + 1
k + l

最後所求為 k + l。