[LeetCode April Challange] Day 15 - Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n, calculate F(n).
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
- 0 <= n <= 30
Solution
Recursion
Time complexity : O(2^n)
Space complexity : O(n)
class Solution {
public:
int fib(int n) {
if (n < 2) return n;
return fib(n-2) + fib(n-1);
}
};
Dynamic Programming
Time complexity : O(n)
Space complexity : O(n)
class Solution {
public:
int fib(int n) {
vector<int> dp(n+2, 0);
dp[0] = 0;
dp[1] = 1;
for (int i=2; i<=n; ++i)
dp[i] = dp[i-2]+dp[i-1];
return dp[n];
}
};
Iterative
Time complexity : O(n)
Space complexity : O(1)
class Solution {
public:
int fib(int n) {
if (n < 2) return n;
int prev = 0;
int curr = 1;
while (1<n--) {
int next = prev + curr;
prev = curr;
curr = next;
}
return curr;
}
};