[LeetCode September Challange]Day20-Unique Paths III
On a 2-dimensional grid, there are 4 types of squares:
- 1 represents the starting square. There is exactly one starting square.
- 2 represents the ending square. There is exactly one ending square.
- 0 represents empty squares we can walk over.
- -1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
- 1 <= grid.length * grid[0].length <= 20
Solution
Time complexity : O(4^mn)
Space complexity : O(mn)
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& grid) {
int start_x = -1;
int start_y = -1;
int n = 1;
for (int y=0; y<grid.size(); ++y) {
for (int x=0; x<grid[0].size(); ++x) {
if (grid[y][x] == 0) ++n;
else if (grid[y][x] == 1) {
start_x = x;
start_y = y;
}
}
}
return dfs(grid, start_x, start_y, n);
}
private:
int dfs(vector<vector<int>>& grid, int x, int y, int n) {
if (x<0 || x==grid[0].size() ||
y<0 || y==grid.size() ||
grid[y][x] == -1) return 0;
else if (grid[y][x] == 2) return n==0;
grid[y][x] = -1;
int paths = dfs(grid, x+1, y, n-1) +
dfs(grid, x-1, y, n-1) +
dfs(grid, x, y+1, n-1) +
dfs(grid, x, y-1, n-1);
grid[y][x] = 0;
return paths;
}
};
一開始找到起始位置、和空位數n,然後從起始位置開始dfs & Backtracking。
若超出範圍、或是該值為-1(走過),則回傳0。
若為目的地、且剩餘空位n==0,代表走好走滿走到目的地,回傳1,反之回傳0。
都不是的話,繼續往下走。
將目前格設為已走過(-1),然後四個方位都走一遍。
走完後回復該格(0),回傳這個位置的走法結果。