Given the root of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.

As a reminder, a binary search tree is a tree that satisfies these constraints:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Note: This question is the same as 1038:

Example 1:

Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

Example 2:

Input: root = [0,null,1]
Output: [1,null,1]

Example 3:

Input: root = [1,0,2]
Output: [3,3,2]

Example 4:

Input: root = [3,2,4,1]
Output: [7,9,4,10]

Constraints:

  • The number of nodes in the tree is in the range [0, 10^4].
  • -10^4 <= Node.val <= 10^4
  • All the values in the tree are unique.
  • root is guaranteed to be a valid binary search tree.

Solution

Time complexity : O(n)
Space complexity : O(n)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* convertBST(TreeNode* root) {
        dfs(root, 0);
        return root;
    }
private:
    int dfs(TreeNode* node, int acc) {
        if (node == nullptr) return acc;
        acc = dfs(node->right, acc);
        node->val += acc;
        acc = dfs(node->left, node->val);
        return acc;
    }
};

用 dfs 右中左的方式去遍歷整棵樹,以一個 node 的觀點來看:

  1. 將目前 acc 值往右子樹傳,並更新 acc 值。
  2. 此時 acc 為比此 node 還要大的值的總和,更新此 node 值。
  3. 將目前 acc 值(即更新後的此 node 值)往左子樹傳,並更新 acc 值。
  4. 回傳 acc 值給 parent node。