You are given an integer array nums and an integer k.

In one operation, you can pick two numbers from the array whose sum equals k and remove them from the array.

Return the maximum number of operations you can perform on the array.

Example 1:

Input: nums = [1,2,3,4], k = 5
Output: 2
Explanation: Starting with nums = [1,2,3,4]:
- Remove numbers 1 and 4, then nums = [2,3]
- Remove numbers 2 and 3, then nums = []
There are no more pairs that sum up to 5, hence a total of 2 operations.

Example 2:

Input: nums = [3,1,3,4,3], k = 6
Output: 1
Explanation: Starting with nums = [3,1,3,4,3]:
- Remove the first two 3's, then nums = [1,4,3]
There are no more pairs that sum up to 6, hence a total of 1 operation.

Constraints:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9

Solution

Sort + Two Pointer

Time complexity : O(nlogn)
Space complexity : O(1)

class Solution {
public:
    int maxOperations(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end());
        int i = 0, j = nums.size()-1;
        int ans = 0;
        while (i < j) {
            int sum = nums[i] + nums[j];
            if (sum == k) {
                ++ans;
                ++i;
                --j;
            } else if (sum < k) ++i;
            else --j;
        }
        return ans;
    }
};

Hash Table

Time complexity : O(n)
Space complexity : O(1)

class Solution {
public:
    int maxOperations(vector<int>& nums, int k) {
        unordered_map<int, int> m;
        int ans = 0;
        for (int n: nums) ++m[n];
        for (int n: nums) {
            if (m[n] < 1 || m[k-n] < 1 + (n+n==k))
                continue;
            --m[n];
            --m[k-n];
            ++ans;
        }
        return ans;
    }
};

將各值出現的次數記錄起來,跑第二遍時檢查是否有相對應的值可用。
特別情況:若有 n+n = k 的情況,則該 n 至少要有 2 個才可以。