[LeetCode July Challange]Day27-Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
return the following binary tree:
3
/ \
9 20
/ \
15 7
solution
time complexity : O(nlogn)
space complexity : O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
int size = inorder.size();
if (size == 0) return nullptr;
int rootVal = postorder[size-1];
printf("root = %d\n", rootVal);
TreeNode* cur = new TreeNode(rootVal);
int rootIdx = searchIdx(inorder, rootVal);
int leftSize = rootIdx;
int rightSize = size-rootIdx-1;
vector<int> leftInorder(inorder.begin(), inorder.begin()+rootIdx);
vector<int> leftPostorder(postorder.begin(), postorder.begin()+leftSize);
/*printf("left inorder : ");
printVec(leftInorder);
printf("left postorder : ");
printVec(leftPostorder);*/
vector<int> rightInorder(inorder.begin()+rootIdx+1, inorder.end());
vector<int> rightPostorder(postorder.begin()+leftSize, postorder.begin()+leftSize+rightSize);
/*printf("right inorder : ");
printVec(rightInorder);
printf("right postorder : ");
printVec(rightPostorder);*/
cur->left = buildTree(leftInorder, leftPostorder);
cur->right = buildTree(rightInorder, rightPostorder);
return cur;
}
private:
int searchIdx(vector<int>& vec, int val) {
auto it = find(vec.begin(), vec.end(), val);
if (it != vec.end()) return distance(vec.begin(), it);
return -1;
}
void printVec(vector<int>& vec) {
for (int i: vec)
printf("%d ", i);
printf("\n");
}
};
給定inorder、postorder,找出其完整的root(左右子樹皆連好)。
首先找到root,就是postorder的最後一個元素。
利用其value,找出他在inorder中的位置,就可以算出左右子樹的大小。
有了左右子樹的大小,就可以得到左右子樹的inorder、postorder。
再利用左右子樹的inorder、postorder,得出左右子樹的root。
inorder:[9, 3, 15, 20, 7]
postorder:[9, 15, 7, 20, 3]