[LeetCode July Challange]Day9-Maximum Width of Binary Tree
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note:
Answer will in the range of 32-bit signed integer.
solution
time complexity : O(n)
space complexity : O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int widthOfBinaryTree(TreeNode* root) {
if (!root) return 0;
int ans = 1;
queue<pair<TreeNode*, int>> q;
q.push({root, 1});
while (!q.empty()) {
int size = q.size();
ans = max(ans, q.back().second - q.front().second + 1);
for (int i=0; i<size; ++i) {
TreeNode* cur = q.front().first;
unsigned int pos = q.front().second;
q.pop();
if (cur->left) q.push({cur->left, pos*2});
if (cur->right) q.push({cur->right, pos*2+1});
}
}
return ans;
}
};
設計資料結構,以{node, pos(編號)}為儲存單位,從root開始一層一層往下處理。此處計數方式為:
1
/ \
2 3
/ \ / \
4 5 6 7
以此類推。
若當前node的編號為i,則其左子樹的編號為i*2,右子樹為i*2+1。
每次處理一個新的層時,先計算這一層最左邊和最右邊node編號的距離,即為該層的寬度。